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PERSONALISATION AND DEVELOPMENTAL ISSUES
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Cognitive Robot Systems that /earn to:
Perceive the world & users through sensors

Model users, learn their skills and preferences, predict intentions

Collaborate with the users to maximize learning outcomes

Interaction over extended periods of time
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Joint actions and tasks: key issues

Personalisation:

Participants explicitly model their partner’s
parameters (skills, preferences, ...) and
adjust their behaviour based on the
internal models; prediction a key element

Hierarchical partner modelling using
ensembles of inverse and forward models
at increasing levels of abstraction

* Lifelong joint action constraints:

Includes developmental aspects: in our
domain outcome is improvement of one or
more of the partners, not only success of
an external temporary goal
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Continuous (lifelong) Interactive Learning Cycle

1. Perceive partner’s actions 2. Use machine learning
algorithms to build
hierarchical user models

Neuronal Reservoir
Spatio-Temporal Feature
Representation Sparse Online

Predictive
Distribution
Mean prediction &
uncertainty estimate

W

Time-series
Inputs

v

Noisy Mackey Glass Sequence

3. Predict required levels of
assistance / collaborative control
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Disabled children in the UK —

o ~54,000 children
require wheelchairs

[1,2]

® 33% cannot navigate
independently [3]

e Safety concerns
limits wheelchair

provision by NHS [4]
@ Children requiring mobility
@ Adults and Elderly

[1] Audit Commission,
2000
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Limited Provision of Powered
Wheelchairs

18

135

9

45

’ 0

Reasons for non-supply

® Nicholson and Bonsall

Survey of 139 NHS
Wheelchair Services [4].

® Of 97 respondents, 50
(51%) did not supply
wheelchairs for children
(< 5 years).

e Why! Safety concerns. [ Safety of the Child
B Safety of Others

B Limited Training Opportunities
- Finance



L
Providing safe exploration opportunities

- In the development-critical years below 5, deprivation of movement leads to
“learned helplessness”

* Vicious cycle:

Limited skill Movement exploration
development Safety for development
3 ¢
Failing at
. NHS
L'm'F?d . wheelchair
mobility mobility
criteria

Our approach: adaptive collaborative control with intelligent robotic wheelchairs

(and humanoid robot assistants)
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Prediction of intention

during collaborative task
execution

Assisting only when needed

111

('

Localisation ) feature poses

module (x.y.86)

target pose
Intention X, ¥, 6)

predictor

(V, w)

| Safe mini-trajectory
generator

confidence
value

Shared
controller

Motor Control
Unit (MCU)

target velocities
(V, w)

* [T. Carlson and Y. Demiris, IEEE ICRA-2008 &

|IEEE Transactions SMC-B 2012,
H Soh and Y Demiris, JHRI 2015 ]

I

Electromyograph-based (EMG) control



Human evaluations

reduction of joystick movements and jerk

Average joystick movement when driving through doorway 1 Average joystick jerk when driving through doorway 1
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0 2 4 6 8 10 12 14 16 18 20
Test Subject Test Subject

0 2 4 6 8 10 12 14 16 18

°81.7% reduction of joystick 75% of cases reduction of
movements (p < 0.001) jerk (movement smoothness)

But not everyone benefited!
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Gaze tracking




Evaluation II: Gaze Tracking [2]

scene Camera
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- For more experienced users, saccadic eye
movements became more erratic when assisted

- Shared control disturbs the user’s forward
model
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Evaluation lll: Secondary task

Secondary task Clear advantage for when the user is preoccupied with other activities

o n s c re e n Mean and standard deviation of incorrect reactions over all users and trials
25
B Marnsl Mode Number of collisions
B No assistance B Collaborative control
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First conclusions: need for personalisation In

human-robot collaboration

= One size does not fit all
= Assistance is not always needed/wanted

= Must determine conditions under which joint
action is desirable, and assistance is needed.
=Need for lifelong user modeling of
sensorimotor and cognitive skills
= A decent amount of work in the fields of
computer-aided learning, intelligent
tutoring...

= Very little work in sensorimotor domains



Designing for children




Children Robotic wheelchairs
Supporting the development of young disabled children

~

GyroHat

Interface Unit

Located at the back, under
the seat, this provides an
interface to the wheelchair
electronics, particularly the
controller-area-network
(CAN) system.

Main Joystick
as the current means of
user input but ARTY’s

modular system means a
wide-range of input
devices can be used.

for estimating the child’s
head-pose which may be
used to infer the child’s
intent, situational
awareness and
distraction level.

Tablet PC

Main computational
platform for localisation,
obstacle avoidance and
intent prediction, among
other processes.

Sensors

One laser ranger and 10
sonars (under the rim
bar) for perceiving the
environment
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Case study: Children Robotic wheelchairs
Supporting the development of young disabled children

Wheelchair Usability Test |

Searching for Toys...

Soh and Demiris, IEEE Trans. NNLS 2015, & J Human Robot Interaction 2015
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Case studye): Children Robotic wheelchairs
Supporting the development of young disabled children

‘i-

g

Follow the Leader
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Hospital trials

User trials with brain injured children

Time: 153.4

Doubled training time tolerance

Improved accessibility to new environments (eg.
the hospital’s gardens)

Assistance Level: 3.0%

Soh and Demiris, IEEE Trans. NNLS 2015, & J Human Robot Interaction 2015



Recall importance for participants for understanding why a partner’s
action was performed in a certain way

scene Camera
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- For more experience users, saccadic eye
movement became more erratic when assisted

- Shared control disturbs the user’s forward
model
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Humanoid Companion
for a Paediatric VWheelchair

Miguel Sarabia
Yiannis Demiris

Personal Robotics Lab

Sarabia and Demiris, Int Conf Social Robotics, 2013



Robotic companion for disabled children

A robotic_companion for
mobility ‘u’@ﬂ chilgzen

£

2870 W\
Miigliel*Sarabia
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Sarabia and Demiris, Int Conf Social Robotics, 2013



HIERARCHICAL ATTENTIVE MULTIPLE MODELS FOR EXECUTION AND
RECOGNITION (HAMMER)

M) Cerebellum

2y,
[4
Visual Processing

s = Demiris, Aziz-Zadeh
] and Bonaiuto,
Neuronformatics 2014

B
Several learning algorithms working at multiple levels :

Learning human representations

Learning at trajectory level [Gaussian Processes, Quantum Mixtures, Recurrent Neural Nets]
Learning at action sequence and symbolic level [Context-free stochastic grammars]

- Auto- and hetero-biographcial memory for storing and revisiting memories



HAMMER Architecture (1)

The Basic Building Blocks

Current state Predicted
next state
Action
Current state
action

Target

Demiris and Khadhouri, Robotics and Autonomous Systems, 54:361-369, 2006



HAMMER Architecture (2)

Action Execution

Inhibit signals
to mentally rehearse

|

action , -

Corrective
Predicted signals

Proprioceptive feedback

Current
state

next state '

Target




HAMMER Architecture (3)

Action Planning Corrective & confidence building signals
Required Predicted
action next state
- Predicted
Current state Required
next state |

action

Target goal

Required

Predicted [—
next state

action




HAMMER Architecture (4)

Action recognition

Current state

of
partner

Required Predicted
action next state
Required Predicted
action next state

0

Demiris, 2007, ‘Prediction of intent in robotics and multiagent systems”, Cognitive Processing, 2007

Actual next state of the partner

Required Predicted

action next state

»
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Learning Human Representations

- Using computer vision for Latent kinematic structure estimation (combining
appearance and movement)

Input Feature Points

Shape Description (SVDD)

Shape Binarization

Feature points of Giraffe

Probability of topological skeleton

60
50 % 1
‘A
40} A .
4 - ‘Q
0} 1
4 e -
-
20} 1
.
3 4
1o} S AT
< 4 G
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Hotion segmentation

Topological Skeleton from Shape

60

50 1

40

301

201

101

Motion segmentation and skeleton

&= Chang & Demiris, CVPR 2015, 2016

30 40 50 60 70 8 80 100

ROBOTICS



Learning complex spatiotemporal data

Echo-State Neural Network + Sparse Online Gaussian Process

Sequential data learning merging reservoir computing
approaches, and Bayesian inference techniques.

Neuronal Reservoir
Spatio-Temporal Feature

Representation Sparse Online Predictive
Gaussian Process Distribution

Retains "novel’ Mean prediction &
reservoir states

Time-series
Inputs

uncertainty estimate

*2D representation

Y. Gao, HJ Chang, and Y Demiris, “User Modelling for
Personalised Dressing Assistance by Humanoid Robots”,
IROS 2015, Hamburg, Germany.

H. Soh and Y. Demiris, “Spatiotemporal learning with the online finite and infinite echo-state
Gaussian Process”, IEEE Transactions on Neural Networks and Learning Systems, 2015




Stochastic context free grammars for task representations

Using “linguistic” representations for task descriptions — Towers of Hanoi

Legend —
: Lift disk

: Drop disk
: Move 1 <—
: Move 1 <—
: Move 2 <—

L

D
5 The height of each bar represents certainty level
- J—

Legend —
: Uift disk
: Drop disk
A: Move 1 <
Move 1 <

2 Move 2 £=-> 3

STCER)
1]

| ;‘j..:""}£ 4 '

ACTION GRAMMAR RULES RELATED TO DROP BRANCH

* Naming conventions: OBJ=object, BOX=box, A=approach. L=leave
HGONE=hand invisibility, OGONE=object invisibility
CONTACT=hand in contact with an object, SKIP=(See Sec.II-D.2)

BEGIN = NEXTBOX [0.33]

| DROP [0.33]

| PLACE [0.33]
DROP = AOBJ CONTACT ABOX LOBJ OGONE [1.0]
AOBIJ = AOBJ aobj [0.5]

| aobj [0.4]

| SKIP aobj [0.1]
ABOX = ABOX abox [0.5]

| abox [0.4]

| SKIP abox [0.1]
CONTACT = CONTACT contact [0.5]

| contact [0.4]

| SKIP contact [0.1]
LOBJ = LOBI lobj [0.5]

| lobj [0.4]

| SKIP lobj [0.1]
OGONE = OGONE ogone [0.5]

| ogone [0.4]

| SKIP ogone [0.1]

Lee, Su, Kim & Demiris, A syntactic
approach to robot imitation learning
using probabilistic activity
grammars, Robotics & Autonomous
Systems, 2013.




Representing human skills )
Hierarchical Representations - building the Zone of Proximal Development

= Collect user data for each component
inverse model and propagate
uncertainties in the hierarchal model

= Predict level of shared control required

= Attentional and sensorimotor load
calculations (Demiris and
Khadhouri, Interaction Studies,

JOVStiCk Use Profile 15 Countour Plot of Predicted Collision Positions (Log Counts)
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- — 3
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Representing human skills )
Hierarchical Representations - building the ZPD

Context

-

Generative
Current user state —»

intention
prediction

User commands

Inverse model 10
achieve intent

>

Regulate assistance
accordingly

GyroHat
for estimating the child’s
head-pose which may be

Interface Unit

Located at the back, under
the seat, this provides an

used to infer the child’s
intent, situati
interface to the wheelchair

intent, situational

electronics, particularly the
controller-area-network
(CAN) system.

Tablet PC

£ Main computational

Main Joystick
as the current means of
user input but ARTY’s
modular system means a
wide-range of input
devices can be used.

Research challenge - principled methods for determining
whether we should help

= Balancing short and long term benefits

Demiris 2009, "Knowing when to assist: Developmental
issues in lifelong assistive robots”, IEEE EMBC 2009



lilietjules



Rehabilitation settings -

Technology challenges

Lifelong modelling of the sensorimotor and cognitive states
of a human user
Formulating a user-specific joint action plan

Short- and long-term robot response adaptation to a
developing system [Demiris, IEEE EBMC 2009]

=

Towards a
dance robot teacher

Imperial College
Fondazione Centro San Raffaele del Monte Tabor

= \\ .“ :”:\ J l QL\ S
Chelsea and Westminster Hospital NHS|

NHS Foundation Trust
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Adaptlve Tralnlng in hlgh performance scenarios

Georgiou and Demiris,
“Predicting Car States
through Learned Models of
Vehicle Dynamics and User
Behaviours”, IEEE Intelligent
wen? Vehicles 2015, Seoul, Korea.
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USER MODELLING UNDER HIGH PERFORMANCE DRIVING ROBOTICS

""Racing Simulator
User races for a
certain period on one

specific track

Personalised User
Models

User, EEG,
Simulator and
Environment data

are being captured . : : : Steering Brake

while the user is A |k

driving Jii s N, = _J Oftine Data

' el ]« fovined

MOdeI Creatlon Throttle Position \ / )

Model encapsulates il 1 i |
] . i N 1 f‘,/,/ e . tate

user’s habits and oo SR ) < :

behaviour on road | S R i N

paths

Georgiou and Demiris, “Predicting Car States through Learned Models of Vehicle
Dynamics and User Behaviours”, IEEE Intelligent Vehicles 2015, Seoul, Korea.



Scaling to high number of inverse models

Attention during action perception

Multi-objective optimisation examining the content of the requests of
the multiple models

Saliency of request is a function of
the confidence of inverse model

Multiple additional criteria:

2 Utility of the request

(how many behaviours will be served if
this request is serviced?) |

4 Cost of request (e.g. saccades) N e el

2 Current reliability of requested " ol B ‘ - |
information

Ognibene & Demiris, IJCAI 2013
EU FP7 project WYSIWYD




Perspective Taking

Level 1 Perspective Taking |

Using Line of Sight Tracing

M. Johnson and Y. Demiris, “Perceptual Perspective Taking and Action Recognition”, International Journal of
Advanced Robotic Systems, 2:4, pp. 301-308, Dec. 2005.

Fischer T, Demiris Y, Markerless Perspective Taking for Humanoid Robots in Unconstrained Environments,
IEEE International Conference on Robotics and Automation, IEEE ICRA 2016


http://www.iis.ee.ic.ac.uk/yiannis/JohnsonDemiris-ijars05.pdf

Imperial College fF;k(:)f BOkTrlCé
London

Conclusions

* Personalisation:

- Participants explicitly model their partner’s
parameters (skills, preferences, ...) and
adjust their behaviour; prediction a key
element

- Hierarchical partner modelling using
ensembles of inverse and forward models

- Lifelong joint action constraints:

- Has to include developmental aspects: in
our domain outcome is improvement of
one or more of the partners, not only
success of an external temporary goal
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