Imperial College London

HUMAN-ROBOT COLLABORATION -PERSONALISATION AND DEVELOPMENTAL ISSUES

Yiannis Demiris

Personal Robotics Laboratory Department of Electrical Engineering Imperial College London

http://www.imperial.ac.uk/PersonalRobotics

Interface Unit Located at the back, under the seat, this provides an interfore so the unbeckhair

Cognitive Robot Systems that *learn to:*

- Perceive the world & users through sensors
- Model users, learn their skills and preferences, predict intentions
- Collaborate with the users to maximize learning outcomes
- Interaction over extended periods of time

Joint actions and tasks: key issues

Personalisation:

London

- Participants explicitly model their partner's parameters (skills, preferences, ...) and adjust their behaviour based on the internal models; prediction a key element
- Hierarchical partner modelling using ensembles of inverse and forward models at increasing levels of abstraction
- Lifelong joint action constraints:
 - Includes developmental aspects: in our domain outcome is improvement of one or more of the partners, not only success of an external temporary goal

Imperial College London

Continuous (lifelong) Interactive Learning Cycle

1. Perceive partner's actions

2. Use machine learning algorithms to build hierarchical user models

3. Predict required levels of assistance / collaborative control

Imperial College London

Disabled children in the UK

Children requiring mobilityAdults and Elderly

- ~54,000 children require wheelchairs [1,2]
- **33%** cannot navigate independently [3]
- Safety concerns limits wheelchair provision by NHS [4]

[1] Audit Commission,2000

Limited Provision of Powered Wheelchairs

- Nicholson and Bonsall Survey of 139 NHS Wheelchair Services [4].
- Of 97 respondents, 50 (51%) did not supply wheelchairs for children (< 5 years).
- Why? Safety concerns.

Limited Training Opportunities

Providing safe exploration opportunities

- In the development-critical years below 5, deprivation of movement leads to "learned helplessness"
- Vicious cycle:

Our approach: adaptive collaborative control with intelligent robotic wheelchairs

(and humanoid robot assistants)

Imperial College London

Ο

Prediction of intention during collaborative task execution

Assisting only when needed

 [T. Carlson and Y. Demiris, IEEE ICRA-2008 & IEEE Transactions SMC-B 2012, H Soh and Y Demiris, JHRI 2015]

Haptic Joystick based control

Electromyograph-based (EMG) control

Human evaluations reduction of joystick movements and jerk

•81.7% reduction of joystick movements (p < 0.001)

75% of cases reduction of jerk (movement smoothness)

But not everyone benefited!

Evaluation II Gaze tracking

Evaluation II: Gaze Tracking [2]

- For more experienced users, saccadic eye movements became more erratic when assisted
- Shared control disturbs the user's forward model

Evaluation III: Secondary task

First conclusions: need for personalisation in human-robot collaboration

- One size does not fit all
- Assistance is not always needed/wanted
 - Must determine conditions under which joint action is desirable, and assistance is needed.
 - Need for lifelong user modeling of sensorimotor and cognitive skills
 - A decent amount of work in the fields of computer-aided learning, intelligent tutoring...
 - Very little work in sensorimotor domains

Designing for children

Children Robotic wheelchairs Supporting the development of young disabled children

Interface Unit

Located at the back, under the seat, this provides an interface to the wheelchair electronics, particularly the controller-area-network (CAN) system.

GyroHat

for estimating the child's head-pose which may be used to infer the child's intent, situational awareness and distraction level.

Tablet PC

Main computational platform for localisation, obstacle avoidance and intent prediction, among other processes.

Main Joystick

as the current means of user input but ARTY's modular system means a wide-range of input devices can be used.

Sensors

One laser ranger and 10 sonars (under the rim bar) for perceiving the environment

Case study: Children Robotic wheelchairs Supporting the development of young disabled children

Soh and Demiris, IEEE Trans. NNLS 2015, & J Human Robot Interaction 2015

Case study₍₂₎: Children Robotic wheelchairs Supporting the development of young disabled children

Hospital trials

User trials with brain injured children

Doubled training time tolerance

Improved accessibility to new environments (eg. the hospital's gardens)

Assistance Level: 3.0%

Soh and Demiris, IEEE Trans. NNLS 2015, & J Human Robot Interaction 2015

Recall importance for participants for understanding why a partner's action was performed in a certain way

- For more experience users, saccadic eye movement became more erratic when assisted
- Shared control disturbs the user's forward model

Robotic companion for disabled children

Humanoid Companion for a Paediatric Wheelchair

> Miguel Sarabia Yiannis Demiris

Personal Robotics Lab

Sarabia and Demiris, Int Conf Social Robotics, 2013

Robotic companion for disabled children

A robotic companion for mobility impaired children

Miguel Sarabia Yiannis Demiris

Personal Robotics Lab

Sarabia and Demiris, Int Conf Social Robotics, 2013

HIERARCHICAL ATTENTIVE MULTIPLE MODELS FOR EXECUTION AND RECOGNITION (HAMMER)

Demiris, Aziz-Zadeh and Bonaiuto, Neuronformatics 2014

Several learning algorithms working at multiple levels :

- Learning human representations
- Learning at trajectory level [Gaussian Processes, Quantum Mixtures, Recurrent Neural Nets]
- Learning at action sequence and symbolic level [Context-free stochastic grammars]
- Auto- and hetero-biographcial memory for storing and revisiting memories

HAMMER Architecture (1)

The Basic Building Blocks

Demiris and Khadhouri, Robotics and Autonomous Systems, 54:361-369, 2006

HAMMER Architecture (2)

Action Execution

Inhibit signals to mentally rehearse

HAMMER Architecture (3)

Action *Planning*

Corrective & confidence building signals

HAMMER Architecture (4)

Demiris, 2007, 'Prediction of intent in robotics and multiagent systems", Cognitive Processing, 2007

Imperial College

London

٠

Learning Human Representations

Using computer vision for Latent kinematic structure estimation (combining appearance and movement)

Chang & Demiris, CVPR 2015, 2016

Learning complex spatiotemporal data Echo-State Neural Network + Sparse Online Gaussian Process

 Sequential data learning merging reservoir computing approaches, and Bayesian inference techniques.

H. Soh and Y. Demiris, "Spatiotemporal learning with the online finite and infinite echo-state Gaussian Process", IEEE Transactions on Neural Networks and Learning Systems, 2015

Stochastic context free grammars for task representations

Using "linguistic" representations for task descriptions - Towers of Hanoi

ACTION GRAMMAR RULES RELATED TO DROP BRANCH

* Naming conventions: OBJ=object, BOX=box, A=approach, L=leave HGONE=hand invisibility, OGONE=object invisibility CONTACT=hand in contact with an object, SKIP=(See Sec.II-D.2)

BEGIN	⇒ 	NEXTBOX DROP PLACE		[0.33 [0.33 [0.33]
DROP	\Rightarrow	AOBJ CONTACT ABOX LOBJ OGONE		[1.0]
AOBJ	\Rightarrow	AOBJ aobj SKIP	aobj aobj	[0.5] [0.4] [0.1]
ABOX	⇒ -	ABOX abox SKIP	abox abox	[0.5] [0.4] [0.1]
CONTACT	⇒ 	CONTACT contact SKIP	contact	[0.5] [0.4] [0.1]
LOBJ	⇒ -	LOBJ lobj SKIP	lobj lobj	[0.5] [0.4] [0.1]
OGONE	⇒ -	OGONE ogone SKIP	ogone ogone	[0.5] [0.4] [0.1]

Lee, Su, Kim & Demiris, A syntactic approach to robot imitation learning using probabilistic activity grammars, Robotics & Autonomous Systems, 2013.

Representing human skills (1)

Hierarchical Representations - building the Zone of Proximal Development

- Collect user data for each component inverse model and propagate uncertainties in the hierarchal model
- Predict level of shared control required
 - Attentional and sensorimotor load calculations (Demiris and Khadhouri, Interaction Studies, 2008)

Representing human skills (2) Hierarchical Representations - building the ZPD

- Research challenge principled methods for determining whether we should help
 - Balancing short and long term benefits

Demiris 2009, "Knowing when to assist: Developmental issues in lifelong assistive robots", IEEE EMBC 2009

Rehabilitation settings 2

Technology challenges

- Lifelong modelling of the sensorimotor and cognitive states of a human user
- Formulating a user-specific joint action plan
- Short- and long-term robot response adaptation to a developing system [Demiris, IEEE EBMC 2009]

Towards a dance robot teacher

Imperial College Fondazione Centro San Raffaele del Monte Tabor

Chelsea and Westminster Hospital NHS NHS Foundation Trust

Adaptive Training in high performance scenarios

Georgiou and Demiris, "Predicting Car States through Learned Models of Vehicle Dynamics and User Behaviours", IEEE Intelligent Vehicles 2015, Seoul, Korea.

Imperial College London

USER MODELLING UNDER HIGH PERFORMANCE DRIVING

Model Creation Model encapsulates user's habits and behaviour on road paths

Position

Current

System

GPR

Predicted

Throttle

Scaling to high number of inverse models Attention during action perception

- Multi-objective optimisation examining the content of the requests of the multiple models
- Saliency of request is a function of the confidence of inverse model
- Multiple additional criteria:
- Utility of the request
- (how many behaviours will be served if this request is serviced?)
- Cost of request (e.g. saccades)
- Current reliability of requested information

Demiris & Khadhouri, Interaction Studies, 2008 Ognibene & Demiris, IJCAI 2013 EU FP7 project WYSIWYD

Perspective Taking

M. Johnson and Y. Demiris, "Perceptual Perspective Taking and Action Recognition", International Journal of Advanced Robotic Systems, 2:4, pp. 301-308, Dec. 2005.

Fischer T, Demiris Y, Markerless Perspective Taking for Humanoid Robots in Unconstrained Environments, IEEE International Conference on Robotics and Automation, IEEE ICRA 2016

Personalisation:

Imperial College

London

- Participants explicitly model their partner's parameters (skills, preferences, ...) and adjust their behaviour; prediction a key element
- Hierarchical partner modelling using ensembles of inverse and forward models
- Lifelong joint action constraints:
 - Has to include developmental aspects: in our domain outcome is improvement of one or more of the partners, not only success of an external temporary goal

THANKS TO MY TEAM

Yiannis Demiris

Hyung Jin Chang

Antoine Cully

Maxime Petit

Martina Zambelli

Miguel Sarabia

Yixing Gao

Josh Elsdon

Regina Lio

Papers & videos at: imperial.ac.uk/PersonalRobotics

Yiannis Demiris www.demírís.ínfo