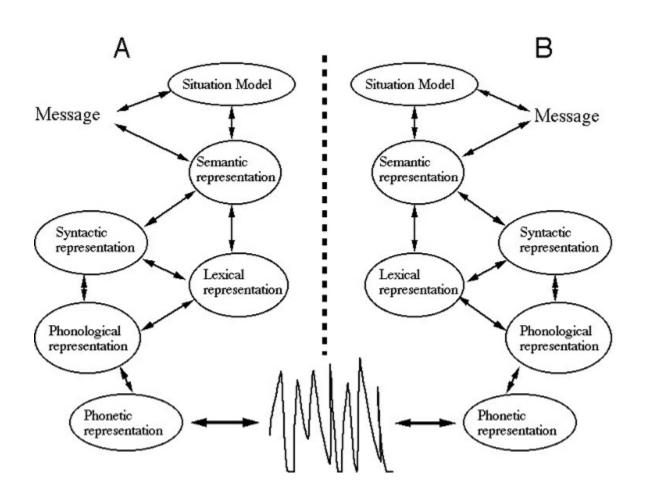
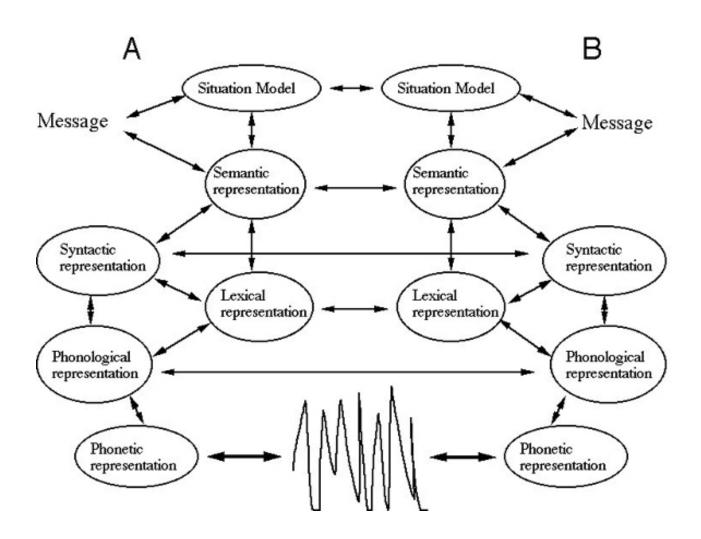
Seemingly Automatic Adjustments in Human-Robot Joint Action

Kerstin Fischer
University of Southern Denmark @ Sonderborg


Aim

- investigate one aspect of the nature of (verbal) coordination: degree of automaticity
- two proposals:
 - interactive alignment model (Pickering & Garrod 2004)
 - based on automatic priming
 - partner modeling only as an exception
 - collaboration model (Clark 1996)
 - coordination is based on partner models


The Interactional Alignment Model

- Pickering & Garrod (2004)
 - the same processes for production and comprehension
 - alignment at lower levels leads to alignment at higher levels
 - relies on mindless, automatic priming
 - renders cognitive partner models superfluous

Traditional Psycholinguistic Processing Models

The Interactive Alignment Model

Problems with Automatic Alignment

- alignment is dependent on the partner
 - more alignment with non-native speakers (Pearson et al. 2006a)
 - more alignment with old, basic computer software than new, expensive software (Pearson et al. 2006b)
- alignment has strategic functions (Mills 2007, Mills & Healey 2008)
- alignment presupposes choice (Bateman 2006)
 - methodological problems

Interactions with Aibo

- Two conditions:
 - 13 native speakers of English each
 - task: get Aibo to move to certain objects
 - robot behavior according to script
 - condition 2: verbal output
 - Aibo greets participant
 - Aibo uses relative clauses
 - Aibo names objects directly
 - Aibo uses an extrinsic reference system

Condition 2: Robot Utterances

- yes hello, how do you do?
- do you want me to go to the object that is in front?
- I did not understand.
- do you mean the object that is south south east of the box?
- do you want me to go to the glass?
- a turn of 360 degrees is not useful.
- **-** ...

Condition 1: non-verbal behavior

84.6% of the participants direct Aibo as if with a verbal remote control:

A004: okay robot - short left please? (breathing) - short left. (5) go on, - you are doing fine, (10) now stop, (breathing) -- stop, (breathing) - robot please stop. –

A005: um turn left, (breathing) (6) um turn left, (breathing) (6) stop, (1) oops stop. (laughter) forward,

- there are no relative clauses
- there are no uses of an extrinsic reference system

Alignment of Instruction Strategy

In Condition 2:

- 84.6% of the speakers consistently use object-based instructions
- path-based instructions are only used for 'fine-tuning':
 - A043: I want the middle, uh, plastic box. with the red lid. yeah, the one at the left hand side. (2) yep, and straight ahead. good, okay, stop.

Alignment of Reference System

 46.2% of the speakers take up the robot's extrinsic reference system, e.g.:

A046: the red and white container in the middle.

Robot: I did not understand.

A046: go to the objects south south east from the container.

A032: I want you to go to the<L> (2) uh blue bowl, that is furthest from you.

Robot: alright. (11) should I head towards the blue object?

A032: the one that is, - north-east.

Alignment of Reference System

 46.2% of the speakers take up the robot's extrinsic reference system, e.g.:

A046: the red and white container in the middle.

Robot: I did not understand.

A046: go to the objects south south east from the container.

A032: I want you to go to the<L> (2) uh blue bowl, that is furthest from you.

Robot: alright. (11) should I head towards the blue object?

A032: the one that is, - north-east.

note: extrinsic reference not in the previous turn!

Lexical Alignment

• 69.2% of the speakers take up the robot`s lexical choice of *object*, e.g.:

A044: hello Aibo. – I want you to go, straight ahead, - past the first cup on your left, - and then, make, a right angled turn to your left. – to the f+ second cup. that you come to.

Robot: do you want me to go to the object that is in front?

A044: keep going towards the object that is in front.

Constructional Alignment

• 61.5% of the participants align wit the robot's relative clauses:

```
Robot: do you want me to go to the object that is in front?
```

A031: - no, to the object that is to your right (...)

A031: now move to the glass in front of you

Robot: I did not understand

A031: -- move to the object that's in front of you.

Interim Conclusion:

- alignment (in the sense of behavior matching) can be found on various levels
 - however, it is unclear whether it is due to priming
- in addition, many other differences can be found

Further Differences

- there are numerous other significant differences
 - fewer instances of zoomorphisation
 - fewer comments about the robot
 - fewer vocatives
 - differences in intonation contours
 - fewer interjections
 - fewer imperatives
 - less formal language
 - complexity of constructions increases, e.g.:

A032: the correct object will be the first

Interim Conclusion:

- alignment (in the sense of behavior matching) can be found on various levels
 - however, it is unclear whether it is due to priming
- in addition, many other differences can be found
 - suggesting that based on the robot's utterances, speakers' understandings of the robot change – and thus that the alignment observable is not based on priming, but on partner modeling

Approaching Partner Models

method: dialog beginnings

Robot: yeah, hello, how do you do?

A008: (2) go straight.

Robot: what can I do for you?

A008: go straight. (7)

Robot: do you want me to go to the object that is in front?

A008: (1) no, go straight.

this participant ignores the social aspects of the robot's utterance

Approaching Partner Models

method: dialog beginnings

Aibo: Yes, hello, how do you do?

A042: (1) I I'm good, and you, (laughter)

Aibo: (1) which object should I head towards?

A042: towards the cup on the furthest, that's furthest left.

this participant responds socially to the social aspects of the robot's utterance

Partner Model Influences Behavior

- significant correlations between dialog beginning and:
 - number of turns r= 0.50*
 - number of falling intonation contours r= 0.54*
 - number of feedback signals r= 0.52*
 - number of declarative sentences r= 0.35
 - number of structuring signals, e.g. okay r= 0.39*
- does the partner model influence also the alignment?

Partner Model Influences Alignment

Robot as non-social communication partner

Aibo: Yes, hello, how do you do?

A032: (3) so I (...) go straight

Aibo: What can I do for you?

A032: (1) go straight about a meter and a half

. . .

Aibo: Do you want me to go to the object that is in front?

A032: (1) no I want you to go to the object that is behind the

first one

> Alignment used to secure understanding

Partner Model Influences Alignment

Robot as social communication partner

Aibo: Yes, hello, how do you do?

A042: (1) I I'm good, and you, (laughter)

Aibo: (1) which object should I head towards?

A042: towards the cup on the furthest, that's furthest left.

- Alignment with the greeting
- otherwise: shared basis

Aibo: Yes, hello, how do you do?

A046: (1) I'm fine, thank you, -- please go to the object, (2) to your left, - in the back.

Aibo: (5) Do you want me to go to the object that is in front A046: - no. to the object in the back.

. . .

Aibo: Exuse me, which of the objects did you name?

A046: - the one in the middle.

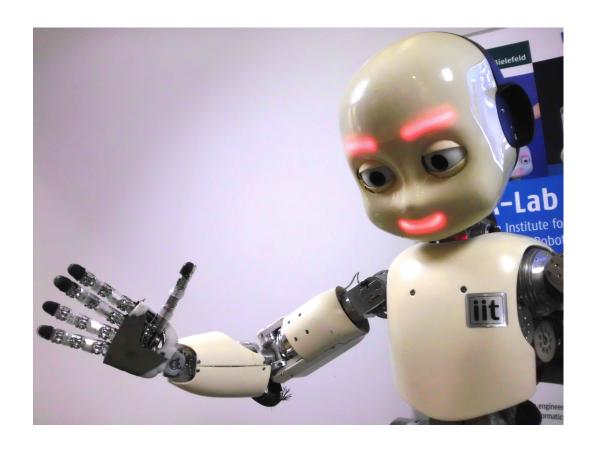
taken to be common ground

Partner Model Influences Alignment

 Robot as social/unsocial communication partner influences alignment with different aspects of the robot's utterances:

	glass	I mean	towards	I want	degrees	RelCl
r	43	23	26	12	15	41

> it is thus the cooperative speakers who don't align


Alignment: Summary

- there are no indicators that alignment is due to automatic priming
- instead, kind and frequency of alignment depend on the respective partner model (social actor or not)
- alignment is used strategically to establish a shared basis
 - a) to secure understanding
 - b) as common ground
- in line with results showing that alignment with features of the communication partner is highly selective (e.g. Kraljic & Brennan 2008)

Conclusions

- people coordinate their behaviors with a robot based on what they consider the affordances of the partner to be
 - > interpersonal differences
- based on perceived communicative tasks, they <u>choose</u> their behaviors
 - possibly subconsciously
 - possibly routinized
 - however, not as automatic response to the partner's utterance

Thank you!

Further Evidence

- suggestion is in line with recent findings (Manson et al. 2013) on the relationship between alignment and cooperation; they find
 - lexical alignment and alignment of laughter to correlate significantly with liking, yet not with cooperativeness
 - alignment of prosodic properties does not lead to liking, and only alignment of speech rate is correlated with cooperation