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Social signal processing

‣ Human communication dynamics (Delaherche et al. 2012a):

‣ Computational models with explicit notion of social interaction

‣ From signal processing to interpretation of behaviours

‣ Inter-personal interaction:  mutual and dynamic influence of partners

‣ Key concepts in psycho-pathology and robotics
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Interpersonal interaction is a highly 
dynamic process

‣ Behavioral dynamics: non-verbal signals (e.g. gesture)

‣ Individual dynamics: multimodal signals (e.g. gesture 
+ speech)

‣Interpersonal dynamics: social signals (e.g. gazing in 
response to pointing of the partner)

‣The «Telegraphist model» of communication 
(Shannon) is usually considered in Human-Computer 
Interaction

‣ Emit / Receive / Respond (Answer)
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‣While Interpersonal Interaction in Humans involves «connected individuals»:
‣ Interdependent individuals
‣ Inherently relational (e.g. role)
‣ Transactional (a person serves simultaneously as speaker and listener)



Non-verbal behaviors in Human-
Machine Interaction
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Action recognition

Object recognition

Behavior synthesis
Affective computing
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Automatic Speech Recognition 
and Natural Language Processing

« Look at this box »

Social signal processing

Modeling, Analysis and Synthesis of Machine-detectable traces of psychological 
and social phenomena (e.g., mimicry, engagement, conflict, interest...)

Task Learning, 
Planning, Decision



But these processes involve more than 
behaviors...
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‣While Interpersonal Interaction in 
Humans involves «connected individuals»:
‣ « Two body neuroscience »
‣ « Biological synchrony »

main effect for condition, F (1,33) ! 118.89, p " .001, ES ! .77,
indicating that infant OT differed according to father OT status. A
condition by time interaction, F (2,68) ! 162.32, p " .001, ES ! .82,
revealed that infants in the OT condition showed a dramatic in-
crease in salivary OT between the first (before father-infant interac-
tion) and next assessments.

Parasympathetic Activation
Fathers’ and infants’ RSA in the three episodes of the FTSSF and

fathers’ baseline RSA appear in Figure 2. Fathers’ RSA during free
play in the OT and placebo conditions were compared with paired-
comparison t tests and showed higher RSA in the oxytocin condi-
tion, t (34) ! 2.55, p " .05, suggesting greater autonomic readiness
for social engagement. In addition, assessing the change in fathers’
RSA from baseline to free play, calculated as RSA during free play

minus RSA at baseline, showed greater RSA increase in the OT
condition, t (34) ! 5.08, p " .05.

Infants’ RSA during the free-play episode was similarly higher in
the oxytocin condition, t (34) ! 1.98, p ! .05, indicating a parallel
effect on the infant’s parasympathetic response. A repeated-mea-
sure ANOVA conducted for father and infant separately showed no
difference in overall RSA level between conditions (OT, PL), sug-
gesting the effect was specific to the free-play episode.

Social Engagement Behavior
Among fathers, episodes of social reciprocity, indexing mo-

ments of infant-oriented positive vocalizations and encourage-
ment of infant orientation to the social context, were longer in
the oxytocin condition, t (34) ! 3.69, p " .001 (Figure 3). Simi-
larly, in the oxytocin condition, fathers exhibited longer epi-

Figure 1. Father and infant salivary oxytocin (OT) levels (pg/mL) in the oxytocin and placebo conditions. Following OT administration to father, father and
infant salivary OT levels are markedly increased compared with baseline assessment. In the placebo condition, no increase is observed. Error bars represent
standard error of the mean.
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Figure 2. Participants’ autonomic response (respiratory sinus arrhythmia) in the oxytocin (OT) and placebo conditions. Following OT administration to father,
father and infant cardiac vagal tone during face-to-face interaction are increased (grey lines), compared with placebo. In the OT condition, fathers showed
greater increase in respiratory sinus arrhythmia level from the pre-interaction to the social interaction assessment. *p " .05. Error bars are standard error of the
mean.
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Timing issues
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main effect for condition, F (1,33) ! 118.89, p " .001, ES ! .77,
indicating that infant OT differed according to father OT status. A
condition by time interaction, F (2,68) ! 162.32, p " .001, ES ! .82,
revealed that infants in the OT condition showed a dramatic in-
crease in salivary OT between the first (before father-infant interac-
tion) and next assessments.

Parasympathetic Activation
Fathers’ and infants’ RSA in the three episodes of the FTSSF and

fathers’ baseline RSA appear in Figure 2. Fathers’ RSA during free
play in the OT and placebo conditions were compared with paired-
comparison t tests and showed higher RSA in the oxytocin condi-
tion, t (34) ! 2.55, p " .05, suggesting greater autonomic readiness
for social engagement. In addition, assessing the change in fathers’
RSA from baseline to free play, calculated as RSA during free play

minus RSA at baseline, showed greater RSA increase in the OT
condition, t (34) ! 5.08, p " .05.

Infants’ RSA during the free-play episode was similarly higher in
the oxytocin condition, t (34) ! 1.98, p ! .05, indicating a parallel
effect on the infant’s parasympathetic response. A repeated-mea-
sure ANOVA conducted for father and infant separately showed no
difference in overall RSA level between conditions (OT, PL), sug-
gesting the effect was specific to the free-play episode.

Social Engagement Behavior
Among fathers, episodes of social reciprocity, indexing mo-

ments of infant-oriented positive vocalizations and encourage-
ment of infant orientation to the social context, were longer in
the oxytocin condition, t (34) ! 3.69, p " .001 (Figure 3). Simi-
larly, in the oxytocin condition, fathers exhibited longer epi-

Figure 1. Father and infant salivary oxytocin (OT) levels (pg/mL) in the oxytocin and placebo conditions. Following OT administration to father, father and
infant salivary OT levels are markedly increased compared with baseline assessment. In the placebo condition, no increase is observed. Error bars represent
standard error of the mean.
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Figure 2. Participants’ autonomic response (respiratory sinus arrhythmia) in the oxytocin (OT) and placebo conditions. Following OT administration to father,
father and infant cardiac vagal tone during face-to-face interaction are increased (grey lines), compared with placebo. In the OT condition, fathers showed
greater increase in respiratory sinus arrhythmia level from the pre-interaction to the social interaction assessment. *p " .05. Error bars are standard error of the
mean.
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Computational modeling of 
interpersonal interactions
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voc.
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Capture multimodal traces of interpersonal 
dynamics from observable behaviors 
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Computational modeling of 
interpersonal interactions
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Pathology, 
Imitation 
recognition

Neural 
correlates

Hormonal 
correlates

Machine sensing

«An observer monitoring an action performed by someone else is 
never far from also being the agent of that actions» (Jeannerod)

Detectable traces of interdependence of partners 
by Machines that Perceive and Act!
‣ Cross-coupling reveals a social signature 
(pathology)



Interpersonal synchrony
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Definitions:

‣ « The degree to which the behaviors in an interaction are non-random, patterned, or 
synchronized in both timing and form» (Bernieri et al., 1988)

‣ Social resonance, mirroring, mimicking, matching, congruence, imitation, convergence, the 
chameleon effect... or interactional synchrony

E. Delaherche et al. : Evaluation of inter-personal synchrony: multidisciplinary approaches. IEEE Trans. on 
A!ective Computing (2012)
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Definitions:

‣ Interpersonal synchrony in social interaction between interactive partners is the dynamic 
and reciprocal adaptation of their verbal and nonverbal behaviors (Delaherche et al. 2012)

‣Three main types of assessment methods for studying synchrony emerged: 

‣ (1) global interaction scales with dyadic items; 

‣ (2) specific synchrony scales; 

‣ (3) micro- coded time-series analyses. 

‣ It appears that synchrony should be regarded as a social signal per se as it has been shown 
to be valid in both normal and pathological populations.

Leclère C et al. (2014) Why Synchrony Matters during Mother-Child Interactions: A Systematic Review. 
PLoS ONE 9(12): e113571. doi: 10.1371/journal.pone.0113571
E. Delaherche et al. : Evaluation of inter-personal synchrony: multidisciplinary approaches. IEEE Trans. on 
A!ective Computing (2012)

Interpersonal synchrony



Extraction of social signatures 
during Human-Robot Joint Action

‣Case of Human-Human Interaction

‣ Mutual influence of partners

‣ Paradigm-shift Looking at partner A to analyze partner B!
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Machine sensing of 
interpersonal interactions

Delaherche et al. : Assessment of Communicative and Coordination Skills of Children with Autism Spectrum 
Disorders and Typically Developing Children using Social Signal.
Research in Autism Spectrum Disorders (2013)
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Prediction of the developmental age from 
non-verbal behaviors

Machine-detectable traces of 
interdependence of partners
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Detectable traces of interdependence of partners 
by Machines that Perceive and Act!
‣ Cross-coupling reveals a social signature 
(pathology)
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Fig. 7. The success rate is shown for each posture for different care-
givers (adults, TD children, and children with ASD) obtained during natural
interaction with the robot. During the learning phase (which only lasted
2 minutes), humans imitated the robot, and then the robot imitated them.
Different caregivers interacted with the robot: 11 adults (corresponding to
2000 images), 15 TD children (corresponding to 3100 images) and 15 children
with ASD (corresponding to 3100 images). Each image was annotated with
the response of the robot during the online interaction, enabling the statistical
analyses to be performed offline.
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Fig. 8. The number of neurons needed to learn with different caregivers
(adults, TD children, and children with ASD) interacting with the robot: 11
adults (corresponding to 2000 images), 15 TD children (corresponding to 3100
images) and 15 children with ASD (corresponding to 3100 images)

postures of adults and TD children more easily than those of
children with ASD.
This result can be attributed to the higher complexity of

the visual input (i.e., the caregiver posture) when children
with ASD imitated the robot. Despite successful performance
during the imitation task, as given by the annotation score,
more variability was observed in the postures of the children
with ASD. Fig. 7-8 confirms the impact of the caregivers
on the robot learning and shows the different developmental
trajectories of the robot. The number of neurons required
by the robot and the postures recognition varied with the
characteristics of the caregivers.
Finally, we also assessed learning using normalized mu-

tual information for paired caregivers. Table II shows the

normalized mutual information used to measure the agree-
ment between two clusters belonging to two groups. The
NMI measured the similarity between the two groups. The
NMITDvs.Adult between the TD children and the adults was
0.57. The NMIASDvs.Adult between the children with ASD
and the adults was 0.6. The NMITDvs.ASD between the TD
children and the children with ASD was 0.62. The results
reinforce previous results (Fig. 7), enabling us to draw the
following conclusions: (1) age affects learning because the
NMI for both groups of children differed substantially from
that for the adult group, though the same number of neurons
were needed for learning with the TD children as for the
adults; and (2) a pathological effect also contributes to learning
because the NMI between the TD children and the children
with ASD was far from 1.

TD/ASD TD/adult ASD/adult
NMI 0.622 0.570 0.603

TABLE II
NMI (NORMALIZED MUTUAL INFORMATION), WHICH MEASURES THE

AGREEMENT BETWEEN TWO CLUSTERS BELONGING TO TWO
POPULATIONS AND SHOWS THE SIMILARITY BETWEEN THE TWO

POPULATIONS

C. Does first partnership (ASD vs. TD) during the learning
phase influence robot learning?
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Fig. 9. Number of neurons needed to learn during the learning phase, which
were obtained by testing two conditions: 1) the robot interacted with TD
children, followed by children with ASD and 2) the robot interacted with
children with ASD, followed by TD children.

Two cases were tested to assess this issue. In the first case,
the robot interacted and learned first with the TD children,
followed by interacting and learning with the children with
ASD. In the second case, the robot interacted and learned
first with the children with ASD, followed by interacting and
learning with the TD children. Fig. 9 shows the number of
neurons needed to learn during the learning phase. In both
cases, the curve varies significantly when the robot started to
interact with the second group (p < 0.05). The results show
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Fig. 2. Overview of experimental protocol: 1) imitation game between caregiver and robot to learn postures; 2) sensory-motor architecture based on a neural
network; and 3) metrics to assess the impact of caregivers

Fig. 4. Global architecture for the recognition and imitation of postures:
visual processing enabled sequential local views to be extracted (a circle
corresponds to a focus point); the V F group (local view recognition) learned
the local views (each group of neurons, MIS, MISP , STM and MP ,
contained 5 neurons that corresponded to 4 postures and a neutral posture).

Fig. 5. Visual processing is shown above: this visual system was based on
the sequential exploration of the image focus points. A gradient extraction was
performed on the input image. A Difference of Gaussian (DOG) convolution
provided the focus points. Finally, the local views (shown by arrows) were
extracted from around each focus point.

B. Focus points detection

The visual system was based on the sequential exploration
of the image focus points. A gradient extraction was performed
on the input image. A Difference Of Gaussian (DOG) convo-
lution provided the focus points. Finally, the local views were
extracted from around each focus point (Fig. 5). However,
there was no constraint on how the local views were selected
(i.e., no framing mechanism). This procedure can result in
many distractors, such as objects in the background, as well
as irrelevant parts of the human body.

C. Visual features
Fig. 4 shows the sensory-motor architecture that enabled

the learning, recognition and imitation of postures. The ex-
tracted local view around each focus point was learned and
recognized by a group of neurons V F (visual features) using
a k-means variant that enabled online learning and real-time
functions [43] called SAW (Self Adaptive Winner takes all)

V Fj = netj .Hmax(γ,net+σnet)(netj) (1)

netj = 1−
1

N

N∑

i=1

|Wij − Ii| (2)

V Fj is the activity of neuron j in the group V F . Hθ(x) is
the Heaviside function1. Here, γ is a vigilance parameter (the
threshold of recognition). When the prototype recognition is
below γ, then a new neuron is recruited (incremental learning).

net is the average of the output, and σnet is the standard
deviation. This model enables the recruitment to adapt to the
dynamics of the input and to reduce the importance of the
choice of γ. Thus, γ can be set to a low value to maintain
a minimum recruitment rate. The learning rule allows both
one-shot learning and long-term averaging. The modification
of the weights (Wij) is computed as follows:

∆Wij = δj
k(aj(t)Ii + ε(Ii −Wij)(1− V Fj)) (3)

with k = ArgMax(aj), aj(t) = 1 only when a new neuron
is recruited; otherwise, aj(t) = 0. Here, δjk is the Kronecker
symbol2, where ε is the adaptation rate for performing long-
term averaging of the stored prototypes. When a new neuron is
recruited, the weights are modified to match the input (the term
aj(t)Ii). The other part of the learning rule, ε(Ii −Wij)(1−
V Fj), averages the already learned prototypes (if the neuron
was previously recruited). The closer the inputs are to the
weights, the less the weights are modified. Conversely, the

1Heaviside function:

Hθ(x) =

{

1 if θ < x
0 otherwise

2Kronecker function:

δj
k =

{

1 if j = k
0 otherwise



Extraction of social signatures 
during Human-Robot Joint Action
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is able to accurately recognize the interactive agents in a subsequent encounter. In Experiment

2, we changed both the imitation task (5 facial expressions) and robotic platform (Robot head)

and obtained a similar transfer for person recognition after the learning phase. In Experiment 3,

Nao interacted with a set of avatars having very similar visual characteristics to each other, and

”personal identity recognition” (here avatars’ visual motor/motion characteristics) was again

achieved.

Figure 2 Overview of the experiments showing imitation learning and partner’s recognition dur-

ing interaction between a robot and a partner. The current experiments used the same learning

architecture and varied the learning context: (Experiment 1, top) posture imitation between the

robot Nao and human partners; (Experiment 2, middle) facial imitation between Robot Head

and human partners; (Experiment 3, lower) posture imitation between the robot Nao and avatars

partners.
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‣ Generalize to other tasks and conditions:

‣ « Early imitation serves a social identity function » (Meltzoff, 1992 1994) 

‣ Learning dynamics of imitation to recognize identity 
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‣ Extracting social traits and a priori on robotics (Rahbar et al. 2015) 

‣ Predicting extraversion from non-verbal features during a face-to-face human-robot interaction

‣ Interpersonal (Human-Human) Interactions are not necessarily  

Rahbar et al. Predicting extraversion from non-verbal features during a face-to-face human-robot interaction, 
International Conference on Social Robotics (2015)
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Extraction of social signatures 
during Human-Robot Joint Action
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Rahbar et al. Predicting extraversion from non-verbal features during a face-to-face human-robot interaction, 
International Conference on Social Robotics (2015)

and speech were enabled. The robot was able to say few sentences, such as “yes”,
“no”, “thank you”.

Experimental Protocol: The experiments of Project EDHHI followed
a protocol2 developed to study the spontaneous behavior of ordinary people
interacting with a robot. The personality traits of the participants were retrieved
by questionnaires that were filled up through a web form two weeks before doing
the experiments, to avoid influences of the questions on their behavior.

Fig. 2. iCub interacting with two participants.

The day of the experi-
ment, participants were in-
formed about the overall pro-
cedure before signing an in-
formed consent form grant-
ing use of all the recorded
data. Before the experiment,
the participants had to watch
a short video presenting the
iCub. The video did not pro-
vide any information about
the experiments. It was instrumental to make sure that the participants had
a uniform prior knowledge of the robot appearance. After the video, each par-
ticipant was introduced to the robot by the experimenter, who did not provide
any specific instruction to the participants about how to behave with the robot
and what to do. The experimenter would simply stay on the right side of the
robot, to supervise the interaction for safety issues. The robot was standing on
its fixed pole, gently waving the hands and looking upright, while holding a
colored toy in its right hand. It was not speaking. Once the participants were
standing and looking in front of the robot, they were free to do whatever they
wanted: talking to the robot, touching it, and so on. For few seconds, the robot
would do nothing, then it would look at the participant (upward gaze) and raise
the right hand, holding the colored paper roll. Since no instructions were given
about this interaction, the participants could choose whether to interpret the
robot’s movement as an intentional and goal-directed action or not, therefore
interact with the robot, or to ignore the action. If the participant had no reac-
tion to this movement, the robot, controlled by the operator, would lower the
hand after 4-5 seconds. Otherwise, the robot would open the hand to give the
toy to the human (see Fig. 2). As participants did not receive any indication by
the experimenter, if they wanted to, they could start interacting more actively
with iCub, asking questions, giving back the toy, and so on. The designed inter-
action, triggered by a simple movement of the robot, is very simple. However,
due to the natural condition and the absence of constraints and indications from
the experimenter, the response produced by the participants can be considered
spontaneous, which justifies the observed variability of behaviors and non-verbal
signals produced during the interaction. When the experimenter would detect
a disengagement of the participant, a long pause or inactivity, she would invite

2 Ivaldi et al., IRB n.20135200001072.

Features Precision Recall F-score

std-d, h-QoM 33% 27% 46%

std-d, h-QoM, h-dom 59% 62% 61%

std-d, h-QoM, h-sync 60% 64% 63%

std-d, h-QoM, h-sync, h-dom 64% 69% 66%
Table 1. Average Percentage of Precision, Recall and F-score

classification a Logistic Regression Classifier (LRC) [16] with penalty parameter
C = 1 and L2 norm L2. The averaged performance of the trained classifier was
assessed via a multiple-run k-fold stratified cross-validation. In this study, 10
run and 10 folds have been adopted. Table 1 summarises the performances of
the LRC, according to the different subsets of used features. The table shows
that the classification result relying on the Quantity of Movement alone on the
standard deviation of the distance, is not able to overcome the chance level.
However, classification results using also dominance and synchrony information
overtake this level. Using the whole set of features the classifier reaches the top
of the performances. Classification based exclusively on the extroversion does
not yield significant results. These results are consistent with previous studies
on prediction of Extraversion in human-human interaction only from non-verbal
movement features (e.g., [23]).

5 Conclusion and Future Works

This paper presented an automatic prediction of Extraversion personality trait
during thin slices of interaction with social robots, using non-verbal movement
features. A Logistic Regression classifier was fed with the following features: the
histogram of Quantity of Motion, the distance between human and robot, and
the histograms of synchrony and dominance. To our knowledge, this is the first
work dedicated to study thin slices of interaction with social robots, using such
kind of predictive features of personality trait. The main limitation presented
by this work can be found in the limited space of the room used for the ex-
periments, in the laboratory environment and in the quite simple actions of the
robot, that could not lead to the variability of the human behaviour as desired.
Also, a random bias towards the specific spatial configurations of human parteci-
pants could limit the effectiveness of the results presented. Thought preliminary,
despite their limitations, these encouraging results indicate the good direction
of research and good premises to improve personality prediction during HRI.
Future works will involve a wider set of features, such as people’s posture and
gaze, examining in depth their role during complex interactions as signatures of
personality traits. Moreover, the space of the parameters of the features extrac-
tion will be explored, as well as how the performances of the system will change
in time, according to the amount of data collected. The final goal is to build
an online, real-time personality recognition system that can be used by social
robots to learn a complex model of their human partners.

Overview of the proposed system for automatic prediction of ex-
troversion in HRI: The proposed system is sketched in Figure 1. We extracted
a set of relevant non-verbal features from the depth image of a Kinect placed
above the head of the iCub interacting face-to-face with adult participants to the
EDHHI experiments. As it will be discussed in Section 3, the relevant features
include quantity of movement, synchrony and the personal distance between hu-
man and robot (frequently studied in proxemics). To predict extraversion from
these features, we trained a model in a supervised way thanks to the ground
truth provided by the score of the questionnaires filled up by the participants,
as reported in Section 2. The classification system and the experimental results
are detailed in Section 4.

2 Methods and Materials

Fig. 1. Overview of the proposed system.

This section briefly describes
the experiments that pro-
vided the dataset used in this
work, along with the ques-
tionnaires and the partici-
pants to the study.

Questionnaires: To as-
sess the personality traits of
the participants, two ques-
tionnaires were used: the Revised Personality Inventory (NEO-PIR) [4], assessing
the personality traits according to the Big Five model [11], and the Negative At-
titude towards Robots Scale (NARS) [15]. From the first questionnaire, only
the 48 questions related to Extraversion were retained. The order of the ques-
tions followed the original questionnaire, while answers were on a Likert-type
scale from 1 (Totally disagree) to 5 (Totally agree). The second questionnaire
consists of 14 questions divided into three sub-scales: ‘Negative attitude toward
situation of interaction with robots” (NARS-S1), “Negative attitude toward so-
cial influence of robots” (NARS-S2) and “Negative attitude toward emotions in
interaction with robots” (NARS-S3). The order of the questions followed the
original questionnaire, while answers were on a Likert-type scale, from 1 to 7
(Strongly disagree / agree).

Robotics setup: The experiments were carried out with the humanoid
iCub [14], a robot shaped like a 4 years old child. The robot was standing on
a fixed pole and it was controlled by an operator hidden behind a wall. The
operator was constantly monitoring the status of the robot, and could intervene
to send high-level commands and respond to unexpected actions or requests of
the participants, using a Wizard-Of-Oz GUI designed to control the robot. For
satefy issues, the experimenter monitored the interaction and was able to inter-
vene and stop the robot in case of urgency. The robot was velocity controlled
when there was no physical interaction with humans, but its stiffness was ad-
justed to make it compliant in case people would touch it [6]. Facial expressions

Extraction of social signatures 
during Human-Robot Joint Action

‣ Extracting social traits and a priori on robotics (Rahbar et al. 2015) 

‣ Predicting extraversion from non-verbal features during a face-to-face human-robot interaction

‣ Interpersonal (Human-Human) Interactions are not necessarily  



Interpersonal interaction for robot learning
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‣ Learning new skills (Najar et al. 2015) 

‣ Boosting traditional task-learning by interpersonal interactions

A. Najar, O. Sigaud, M. Chetouani. Social-Task Learning for HRI.  International Conference on Social Robotics 
(2015) !"#$%&!'!(% %)*)(%+,-.% */0#12341$5%6718"#"9%:/8%;()%
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‣ Learning new skills (Najar et al. 2015) 

‣ Boosting traditional task-learning by interpersonal interactions

A. Najar, O. Sigaud, M. Chetouani. Social-Task Learning for HRI.  International Conference on Social Robotics 
(2015)
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The Task Model learns the task using: 
-  task rewards in multi-step. 
-  social rewards in single-step. 

The Social Model learns to predict action values 
using  task rewards in multi-step. 
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‣ Learning new skills (Najar et al. 2015) 

‣ Boosting traditional task-learning by interpersonal interactions

A. Najar, O. Sigaud, M. Chetouani. Social-Task Learning for HRI.  International Conference on Social Robotics 
(2015)
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Probability to converge before  steps 
(performance over 1000 runs) 
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‣ Exploiting dynamics of social and task learning

A. Najar, O. Sigaud, M. Chetouani. (submitted)



Conclusions

‣ Modeling and exploiting interpersonal interaction dynamics for individual characterization

‣ What are the good representation(s) of social signals?

‣ Nature of signals: discrete, events, dynamics, multimodal...

‣ Learning Interpersonal Human-Robot Interaction during focused tasks

‣ Scenarios and applications: lack of synchrony, pathology, Human-agent interaction
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MICHELANGELO
New technology to help 

children with Autism

The MICHELANGELO project intends 
to bring the assessment and the 
therapy of the autism out of the 
clinical environment and 
develop a patient-centric 
home-based intervention 
requiring a minimal 
human involvement 
and therefore 
extremely cost 
e!ective.
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